

# Supercomputer RAS via Informatics

(RAS – Reliability, Availability, Serviceability)

CIS External Review August 19, 2004

Jon Stearley

<u>jrstear@sandia.gov</u>

Sandia National Laboratories Dept. 9224





# Plenty of Faults, Plenty of Logs, But Actionable Information is Elusive

- Event logs are a ubiquitous source of system feedback, but are notoriously free in format
- Supercomputers have many points of failure, with complex and dynamic interdependencies
  - Identifying the root cause of faults in supercomputers is difficult (and expensive)

Leverage recent advances in informatics!





### **Impact**

- Inspection of system logs is fundamental to debugging – increased capability to quickly extract meaningful information WILL impact MTTR (mean time to repair) and MAY impact MTBF (mean time between failure). Red Storm is principal impact target.
- An analysis system which accepts any time-stamped sequence of free-text messages will:
  - NOT be device specific: Computer, Network Switch;
     Linux, TOS, Catamount; Cplant, ASCI Red, Red Storm
  - NOT be application specific: RAS, security, others...





#### **Charter Statement**

With the specific goal of increasing supercomputer RAS, we intend to produce a machine-learning analysis system which enables content-novice analysts to efficiently understand evolving trends, identify anomalies, and investigate cause-effect hypotheses in large multiple-source log sets.







What message content and occurrence rate is normal?

**Teiresias** (Bioinformatics code from IBM TJ Watson) Two stages of operation:

- Scanning: enumerate all elementary patterns of at least L/W specificity (I.e. find all phrases of length W words, where at least L of them never change (the others do change))
- 2. Convolution: combine elementary patterns into maximal irredundant "motifs" (leverage property of "downward closure")

**Sandia action:** convert logs in/out of teiresias-acceptable format, cluster resulting "message templates" by time statistics

**Result:** automatically-generated "message templates", sorted into three content categories: common, deviant, anomalous

## **Interactive Review via Logview**

```
# label
          k period stddev
                                      motif:
L115
          32
                                       HWRPB cycle frequency (462962962) seems inaccurate - using the measured value of * Hz
L75
                                       rte-init: Found a LANai type 7.2 with 2097152 bytes (2048kB) of memory unit 0 [3]
L76
                                       rte-init: Found a LANai type * with 2097152 bytes (2048kB) of memory unit 0 🗆
L57
                  3600
                                       named: XSTATS * 1007338854 RR=* RNXD=* RFwdR=* RDupR=* RFail=* RFErr=0 RErr=* RAXFR=76 RLam
LO
                                       NOCLASS
                                                                 View lines in original (ungrouped) order
L75 Nov 25 17:53:25 src@node/if-0.n-3.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 7.2 with 2097152 bytes (2048kB) of memory unit (
L75 Nov 25 17:53:25 src@node/if-0.n-23.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 7.2 with 2097152 bytes (2048kB) of memory unit
L75 Nov 25 17:53:25 src@node/if-0.n-4.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 7.2 with 2097152 bytes (2048kB) of memory unit (
L75 Nov 25 17:53:27 src@node/if-0.n-11.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 7.2 with 2097152 bytes (2048kB) of memory unit L75 Nov 25 17:53:29 src@node/if-0.n-2.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 7.2 with 2097152 bytes (2048kB) of memory unit (
L75 Nov 25 17:53:29 src@node/if-0.n-17.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 7.2 with 2097152 bytes (2048kB) of memory unit
L75 Nov 25 17:53:30 src@node/if-0.n-9.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 7.2 with 2097152 bytes (2048kB) of memory unit (
L75 Nov 25 17:53:30 src@node/if-0.n-22.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 7.2 with 2097152 bytes (2048kB) of memory unit
L75 Nov 25 17:53:31 src@node/if-0.n-5.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 7.2 with 2097152 bytes (2048kB) of memory unit 0
L75 Nov 25 17:53:31 src@node/if-0.n-8.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 7.2 with 2097152 bytes (2048kB) of memory unit (
L76
L76 Nov 25 17:53:04 src@node/if-0.n-15.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 9.0 with 2097152 bytes (2048kB) of memory unit
L76 Nov 25 17:53:07 src@node/if-0.n-20.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 9.0 with 2097152 bytes (2048kB) of memory unit L76 Nov 25 17:53:23 src@node/if-0.n-28.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 9.0 with 2097152 bytes (2048kB) of memory unit L76 Nov 25 17:53:24 src@node/if-0.n-32.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 9.0 with 2097152 bytes (2048kB) of memory unit L76 Nov 25 17:53:24 src@node/if-0.n-32.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 9.0 with 2097152 bytes (2048kB) of memory unit
L76 Nov 25 17:53:25 src@node/if-0.n-25.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 9.0 with 2097152 bytes (2048kB) of memory unit L76 Nov 25 17:53:31 src@node/if-0.n-29.t-37/if-1.n-0.t-37 rte-init: Found a LANai type 9.0 with 2097152 bytes (2048kB) of memory unit
LO Nov 25 00:22:26 src@node/if-0.n-28.t-37/if-1.n-0.t-37 TSUNAMI machine check: vector=0x630 pc=0xfffffc000032f310 code=0x100000086
LO Nov 25 00:22:26 src@node/if-0.n-28.t-37/if-1.n-0.t-37 machine check type: correctable ECC error (retryable)
LO Nov 25 06:06:15 src@node/if-0.n-5.t-37/if-1.n-0.t-37 PCT-540[430]: ignoring ABORT LOAD FIRST TRY from 797/2, unknown job ID 1733
LO Nov 25 06:09:18 src@node/if-0.n-20.t-37/if-1.n-0.t-37 nfs: task 64052 can't get a request slot
```





#### In contrast to Teiresias:

- Specifically designed to generate "message templates"
- Memory-efficient for log data
- Less effective anomaly categorization
- Open source ☺



FY04 Progress: "Towards Informatic Analysis of Syslogs", IEEE Cluster '04

## **Syslog Latent Semantic Analysis**

## Document similarity calculation using rank-reduced term space via Singular Value Decomposition.



$$\mathbf{W}_{\text{here}} \mathbf{Y} = \underset{\text{normalize}}{\text{column}} \left[ \mathbf{S}_{\mathbf{r}} \mathbf{Y}_{\mathbf{r}}^{\mathbf{T}} \right]$$



### **Exploration via VxInsight**

 Sandia (9212) application, uses include patent and gene research (and now, syslogs)

SQL database underneath (provides flexible





#### **Future Work**

- Study novelty rate
  - Time rate of new message templates?
  - Rate of change of VxInsight landscape?
     (must reach "steady state" to be practical)
- Optimize parameters for effectiveness
  - "Term" and "Document" creation parameters?
  - Are traditional LSA weighting functions best for this application?
  - Degree of Rank Reduction?
- Quantitative effectiveness measure for test data sets
- Transition to RedStorm logs (RedStorm is primary impact target)
- Improve user interface
  - Expose "most distinguishing phrase" as VxInsight labels
  - Reduce manual effort required per parameter change; utilize Sandia Text Analysis Library "STANLEY" (Travis Bauer, 15241)





## **Backup Slides**





## **RAS Projects Context**



## Supercomputer RAS Via Informatics



## Plentiful Data, Elusive Information

#### Ross Syslog Lines

(roughly periodic with biweekly system reboots, slight correllation with job turnover rate)







#### **Research Context**

- Computer Security misuse and intrusion detection
- Information Mgmt search engines, translation
- Health gene and protein sequencing
- National Security language modeling, antiterrorism

# Nobody is leveraging informatics towards supercomputer RAS

(upon which many of the above depend)





## **Analyst Thought Process**

## "What aspects of the message stream are strongly correlated with system malfunction or misuse?"

- 1. What message content and occurrence rate is normal?
- 2. What message groups are normal?
- Can devices be classified by their output message stream?
- 4. Can users or applications be classified by their resulting message stream?
- 5. Are device-to-device and/or job-to-job log stream similarities sufficient to identify hardware or software failures?



## **Fault-Annotated Log Database**



SQL Database supports flexible subset selection:

- By Device
- By Time
- By Job
- By User
- By Error or Message Type
- etc



## Automated Grouping of Time-correlated Messages

#### What message groups are normal?

#### Approach:

Cluster message templates using their occurrence statistics:

- 1. Support
- 2. Inter-arrival median
- 3. Inter-arrival standard deviation

#### **Results:**

- 1. Detects periodic messages
- 2. Groups message groups which are rigidly timecorrelated.





## Automated Message Typing: Leveraging SLCT

### **SLCT – Simple Logfile Clustering Tool**

#### **Operates in three phases:**

- Frequent words –count all {position, word} tuples (pw), prune those occurring less than S times
- Frequent messages count all single-line pw "clusters" ("1w 2w 3\_\* 4\_w", ie message types)
- 3. Wildcard refinement (optional) determine constant prefix or suffix for wildcards

#### **Output and Categorization:**

- pw clusters occurring at least S times (common)
- less specific pw clusters which, if joined with above pw clusters, occur at least S times (common+deviant)
- lines not matching either of the above (rare)





#### **Term-Document Matrix**



G and L are weighting functions.

Most simple case is **G=I** and **L=tf(i,j)**, where **tf(i,j)** is "term-frequency" of **i**'th term in **j**'th document)



## Term-Doc Matrix Weighting Functions

### **Log-Entropy**

#### **Inverse Document Frequency**

